Computational generation and screening of RNA motifs in large nucleotide sequence pools
نویسندگان
چکیده
Although identification of active motifs in large random sequence pools is central to RNA in vitro selection, no systematic computational equivalent of this process has yet been developed. We develop a computational approach that combines target pool generation, motif scanning and motif screening using secondary structure analysis for applications to 10(12)-10(14)-sequence pools; large pool sizes are made possible using program redesign and supercomputing resources. We use the new protocol to search for aptamer and ribozyme motifs in pools up to experimental pool size (10(14) sequences). We show that motif scanning, structure matching and flanking sequence analysis, respectively, reduce the initial sequence pool by 6-8, 1-2 and 1 orders of magnitude, consistent with the rare occurrence of active motifs in random pools. The final yields match the theoretical yields from probability theory for simple motifs and overestimate experimental yields, which constitute lower bounds, for aptamers because screening analyses beyond secondary structure information are not considered systematically. We also show that designed pools using our nucleotide transition probability matrices can produce higher yields for RNA ligase motifs than random pools. Our methods for generating, analyzing and designing large pools can help improve RNA design via simulation of aspects of in vitro selection.
منابع مشابه
A computational proposal for designing structured RNA pools for in vitro selection of RNAs.
Although in vitro selection technology is a versatile experimental tool for discovering novel synthetic RNA molecules, finding complex RNA molecules is difficult because most RNAs identified from random sequence pools are simple motifs, consistent with recent computational analysis of such sequence pools. Thus, enriching in vitro selection pools with complex structures could increase the probab...
متن کاملIn vitro RNA random pools are not structurally diverse: a computational analysis.
In vitro selection of functional RNAs from large random sequence pools has led to the identification of many ligand-binding and catalytic RNAs. However, the structural diversity in random pools is not well understood. Such an understanding is a prerequisite for designing sequence pools to increase the probability of finding complex functional RNA by in vitro selection techniques. Toward this go...
متن کاملOn the structural repertoire of pools of short, random RNA sequences.
A detailed knowledge of the mapping between sequence and structure spaces in populations of RNA molecules is essential to better understand their present-day functional properties, to envisage a plausible early evolution of RNA in a prebiotic chemical environment and to improve the design of in vitro evolution experiments, among others. Analysis of natural RNAs, as well as in vitro and computat...
متن کاملRAGPOOLS: RNA-As-Graph-Pools - a web server for assisting the design of structured RNA pools for in vitro selection
SUMMARY Our RNA-As-Graph-Pools (RagPools) web server offers a theoretical companion tool for RNA in vitro selection and related problems. Specifically, it suggests how to construct RNA sequence/structure pools with user-specified properties and assists in analyzing resulting distributions. This utility follows our recently developed approach for engineering sequence pools that links RNA sequenc...
متن کاملDiscovering cis-Regulatory RNAs in Shewanella Genomes by Support Vector Machines
An increasing number of cis-regulatory RNA elements have been found to regulate gene expression post-transcriptionally in various biological processes in bacterial systems. Effective computational tools for large-scale identification of novel regulatory RNAs are strongly desired to facilitate our exploration of gene regulation mechanisms and regulatory networks. We present a new computational p...
متن کامل